Michaelis-Menten-Theorie

Aus besserwiki.de
Zur Navigation springen Zur Suche springen
Michaelis-Menten-Sättigungskurve für eine Enzymreaktion, die das Verhältnis zwischen der Substratkonzentration und der Reaktionsgeschwindigkeit zeigt.

In der Biochemie ist die Michaelis-Menten-Kinetik eines der bekanntesten Modelle der Enzymkinetik. Sie ist nach dem deutschen Biochemiker Leonor Michaelis und der kanadischen Ärztin Maud Menten benannt. Das Modell hat die Form einer Gleichung, die die Geschwindigkeit von enzymatischen Reaktionen beschreibt, indem sie die Reaktionsgeschwindigkeit (Geschwindigkeit der Bildung eines Produkts, ) zu , der Konzentration eines Substrats S. Die Formel lautet

Diese Gleichung wird als Michaelis-Menten-Gleichung bezeichnet. Hier, die maximale Geschwindigkeit, die das System bei Sättigung der Substratkonzentration für eine bestimmte Enzymkonzentration erreicht. Wenn der Wert der Michaelis-Konstante numerisch gleich der Substratkonzentration ist, dann ist die Reaktionsgeschwindigkeit die Hälfte von . Bei biochemischen Reaktionen, an denen ein einziges Substrat beteiligt ist, wird häufig angenommen, dass sie der Michaelis-Menten-Kinetik folgen, ohne die dem Modell zugrunde liegenden Annahmen zu berücksichtigen.

Die Michaelis-Menten-Kinetik beschreibt die Enzymkinetik nach folgendem vereinfachendem Mechanismus: Das freie Enzym bindet zuerst reversibel an sein Substrat. Im gebundenen Zustand (Enzym-Substrat-Komplex) wird das Substrat umgewandelt und das Reaktionsprodukt löst sich vom Enzym. Falls der Zerfall des Komplexes in Enzym und Substrat gegenüber der Bildung des Produkts dominiert, gilt nach Einstellung des Fließgleichgewichts für die reversible Reaktion das Massenwirkungsgesetz und die Michaelis-Menten-Gleichung für die Geschwindigkeit der Gesamtreaktion (Substratverbrauch und Produktbildung) in Abhängigkeit von der Substratkonzentration und weiteren Parametern. Damit kann zum Beispiel die Sättigung der Produktionsgeschwindigkeit von Produkten in enzymatischen Reaktionen erklärt werden.

Die Michaelis-Menten-Kinetik ist nach Leonor Michaelis und Maud Menten benannt, die 1913 verbesserte experimentelle und Auswertungsmethoden für die Enzymkinetik demonstrierten. Die Hypothese für den Mechanismus mit dem Komplex als Zwischenprodukt hatte Adolphe Wurtz bereits 1880 veröffentlicht. Im Jahr 1902 leitete Victor Henri daraus die Michaelis-Menten-Gleichung ab.

Modell

Veränderung der Konzentrationen von Enzym E, Substrat S, Komplex ES und Produkt P über die Zeit

Im Jahr 1901 stellte der französische Physikochemiker Victor Henri fest, dass Enzymreaktionen durch eine Bindung (allgemeiner: eine bindende Wechselwirkung) zwischen dem Enzym und dem Substrat ausgelöst werden. Seine Arbeit wurde von der deutschen Biochemikerin Leonor Michaelis und der kanadischen Ärztin Maud Menten aufgegriffen, die die Kinetik eines enzymatischen Reaktionsmechanismus, der Invertase, untersuchten, die die Hydrolyse von Saccharose in Glucose und Fructose katalysiert. Im Jahr 1913 schlugen sie ein mathematisches Modell der Reaktion vor. Dabei bindet ein Enzym E an ein Substrat S und bildet einen Komplex ES, der wiederum ein Produkt P freisetzt, das das ursprüngliche Enzym regeneriert. Dies kann schematisch wie folgt dargestellt werden

Fehler beim Parsen (Syntaxfehler): {\displaystyle \ce{E{} + S <=>[\mathit{k_f}][\mathit{k_r}] ES ->[k_\ce{cat}] E{} + P <span title="Aus: Englische Wikipedia, Abschnitt &quot;Model&quot;" class="plainlinks">[https://en.wikipedia.org/wiki/Michaelis–Menten_kinetics#Model <span style="color:#dddddd">ⓘ</span>]</span>}}

wobei (Vorwärts-Ratenkonstante), (umgekehrte Geschwindigkeitskonstante), und (katalytische Geschwindigkeitskonstante) die Geschwindigkeitskonstanten bezeichnen, die Doppelpfeile zwischen S (Substrat) und ES (Enzym-Substrat-Komplex) die Tatsache darstellen, dass die Enzym-Substrat-Bindung ein reversibler Prozess ist, und der einzelne Vorwärtspfeil die Bildung von P (Produkt) darstellt.

Unter bestimmten Annahmen - z. B. wenn die Enzymkonzentration viel geringer ist als die Substratkonzentration - ist die Geschwindigkeit der Produktbildung gegeben durch

Die Reihenfolge der Reaktion hängt von der relativen Größe der beiden Terme im Nenner ab. Bei niedriger Substratkonzentration , so dass die Reaktionsgeschwindigkeit linear mit der Substratkonzentration variiert (Kinetik erster Ordnung). Bei höheren mit wird die Reaktion jedoch unabhängig von (Kinetik nullter Ordnung) und nähert sich asymptotisch ihrer maximalen Geschwindigkeit wobei die anfängliche Enzymkonzentration ist. Diese Rate wird erreicht, wenn das gesamte Enzym an das Substrat gebunden ist. Die Umsatzzahl ist die maximale Anzahl von Substratmolekülen, die pro Enzymmolekül und Sekunde in ein Produkt umgewandelt werden. Eine weitere Zugabe von Substrat erhöht die Rate nicht, man spricht von Sättigung.

Der Wert der Michaelis-Konstante ist numerisch gleich dem Wert bei der die Reaktionsgeschwindigkeit das Halbmaximum erreicht, und ist ein Maß für die Affinität des Substrats für das Enzym - ein kleiner Wert zeigt eine hohe Affinität an, was bedeutet, dass sich die Rate mit geringerer als bei Reaktionen mit einer größeren . Die Konstante wird nicht von der Konzentration oder Reinheit eines Enzyms beeinflusst. Der Wert von ist sowohl von der Identität des Enzyms als auch von der des Substrats sowie von Bedingungen wie Temperatur und pH-Wert abhängig.

Das Modell wird in einer Vielzahl anderer biochemischer Situationen als der Enzym-Substrat-Wechselwirkung verwendet, darunter Antigen-Antikörper-Bindung, DNA-DNA-Hybridisierung und Protein-Protein-Wechselwirkung. Sie kann zur Charakterisierung einer generischen biochemischen Reaktion verwendet werden, so wie die Langmuir-Gleichung zur Modellierung der generischen Adsorption biomolekularer Spezies verwendet werden kann. Wird eine empirische Gleichung dieser Form auf das mikrobielle Wachstum angewandt, wird sie manchmal als Monod-Gleichung bezeichnet.

Dieses System lässt sich allgemein durch ein System aus gewöhnlichen Differentialgleichungen beschreiben, welches unter einer der Voraussetzungen [E] >> [S] oder [S] >> [E] näherungsweise analytisch lösbar ist, sonst numerisch. Die Michaelis-Menten-Gleichung gilt unter der weiteren Annahme des Fließgleichgewichtes.

Anwendungen

Die Parameterwerte variieren stark zwischen den Enzymen:

Enzym (M) (s-1) (M-1s-1)
Chymotrypsin 1.5 × 10−2 0.14 9.3
Pepsin 3.0 × 10−4 0.50 1.7 × 103
T-RNA-Synthetase 9.0 × 10−4 7.6 8.4 × 103
Ribonuklease 7.9 × 10−3 7.9 × 102 1.0 × 105
Kohlensäureanhydrase 2.6 × 10−2 4.0 × 105 1.5 × 107
Fumarase 5.0 × 10−6 8.0 × 102 1.6 × 108

Die Konstante (katalytische Effizienz) ist ein Maß dafür, wie effizient ein Enzym ein Substrat in ein Produkt umwandelt. Diffusionsbegrenzte Enzyme, wie die Fumarase, arbeiten an der theoretischen Obergrenze von 108 - 1010 M-1s-1, begrenzt durch die Diffusion des Substrats in das aktive Zentrum.

Die Michaelis-Menten-Kinetik wurde auch auf eine Vielzahl von Bereichen außerhalb biochemischer Reaktionen angewandt, z. B. auf die alveoläre Ausscheidung von Stäuben, den Reichtum von Artenpools, die Ausscheidung von Blutalkohol, die Beziehung zwischen Photosynthese und Strahlungsintensität und die bakterielle Phageninfektion.

Die Gleichung kann auch zur Beschreibung der Beziehung zwischen der Leitfähigkeit von Ionenkanälen und der Ligandenkonzentration verwendet werden.

Ableitung

Wendet man das Massenwirkungsgesetz an, das besagt, dass die Geschwindigkeit einer Reaktion proportional zum Produkt der Konzentrationen der Reaktanten ist (d. h. ), ergibt sich ein System von vier nichtlinearen gewöhnlichen Differentialgleichungen, die die Änderungsrate der Reaktanten mit der Zeit bestimmen

In diesem Mechanismus ist das Enzym E ein Katalysator, der die Reaktion nur erleichtert, so dass seine Gesamtkonzentration, frei plus gebunden, eine Konstante ist (d. h. ). Dieser Erhaltungssatz kann auch durch die Addition der ersten und dritten Gleichung beobachtet werden.

Gleichgewichtsannäherung

In ihrer ursprünglichen Analyse gingen Michaelis und Menten davon aus, dass sich das Substrat im unmittelbaren chemischen Gleichgewicht mit dem Komplex befindet, was Folgendes impliziert

Aus dem Erhaltungssatz für Enzyme ergibt sich

Kombiniert man die beiden obigen Ausdrücke, erhält man

Nach Vereinfachung ergibt sich

wobei ist die Dissoziationskonstante für den Enzym-Substrat-Komplex. Daraus ergibt sich die Geschwindigkeit der Reaktion - die Geschwindigkeit, mit der P gebildet wird - ist

wobei ist die maximale Reaktionsgeschwindigkeit.

Quasi-Stationärzustandsnäherung

Eine alternative Analyse des Systems wurde von dem britischen Botaniker G. E. Briggs und dem britischen Genetiker J. B. S. Haldane im Jahr 1925 durchgeführt. Sie nahmen an, dass sich die Konzentration des intermediären Komplexes auf der Zeitskala der Produktbildung nicht ändert - bekannt als Quasi-Stadtzustandsannahme oder Pseudo-Stadtzustandshypothese. Mathematisch gesehen bedeutet diese Annahme . Dies ist mathematisch dasselbe wie die vorherige Gleichung, wobei ersetzt durch . Nach den gleichen Schritten wie oben ergibt sich also die Geschwindigkeit der Reaktion ist

wobei

ist als Michaelis-Konstante bekannt.

Annahmen und Einschränkungen

Im ersten Schritt der Herleitung wird das Gesetz der Massenwirkung angewandt, das von freier Diffusion ausgeht. In der Umgebung einer lebenden Zelle, in der eine hohe Proteinkonzentration herrscht, verhält sich das Zytoplasma jedoch oft eher wie ein zähflüssiges Gel als eine frei fließende Flüssigkeit, wodurch die Molekularbewegungen durch Diffusion eingeschränkt und die Reaktionsgeschwindigkeiten verändert werden. Obwohl das Gesetz der Massenwirkung in heterogenen Umgebungen gültig sein kann, ist es angemessener, das Zytoplasma als Fraktal zu modellieren, um seine Kinetik der begrenzten Beweglichkeit zu erfassen.

Die von den beiden Ansätzen vorhergesagten Reaktionsgeschwindigkeiten sind ähnlich, mit dem einzigen Unterschied, dass bei der Gleichgewichtsannäherung die Konstante als definiert, während bei der Quasi-Gleichgewichtsannäherung . Beide Ansätze beruhen jedoch auf unterschiedlichen Annahmen. Die Michaelis-Menten-Gleichgewichtsanalyse ist gültig, wenn das Substrat das Gleichgewicht auf einer viel schnelleren Zeitskala erreicht, als das Produkt gebildet wird, oder genauer gesagt, dass

Im Gegensatz dazu ist die Briggs-Haldane-Analyse im Quasi-Stationärzustand gültig, wenn

Sie gilt also, wenn die Enzymkonzentration viel geringer ist als die Substratkonzentration oder oder beides.

Sowohl bei der Michaelis-Menten- als auch bei der Briggs-Haldane-Analyse verbessert sich die Qualität der Approximation mit abnimmt. Bei der Modellbildung wird jedoch häufig die Michaelis-Menten-Kinetik herangezogen, ohne die zugrunde liegenden Annahmen zu berücksichtigen.

Wichtig ist, dass die Irreversibilität zwar eine notwendige Vereinfachung darstellt, um eine nachvollziehbare analytische Lösung zu erhalten, die Produktbildung im allgemeinen Fall aber nicht irreversibel ist. Die Enzymreaktion wird korrekter beschrieben als

Fehler beim Parsen (Syntaxfehler): {\displaystyle \ce{ E{} + S <=>[\mathit{k_{f_1}}][\mathit{k_{r_1}}] ES <=>[\mathit{k_{f_2}}][\mathit{k_{r_2}}] E{} + P. <span title="Aus: Englische Wikipedia, Abschnitt &quot;Assumptions and limitations&quot;" class="plainlinks">[https://en.wikipedia.org/wiki/Michaelis–Menten_kinetics#Assumptions_and_limitations <span style="color:#dddddd">ⓘ</span>]</span>}}

Im Allgemeinen ist die Annahme der Irreversibilität in Situationen, in denen einer der folgenden Punkte zutrifft, ein guter Ansatz:

1. Die Konzentration des/der Substrats/Substrate ist sehr viel größer als die Konzentration der Produkte:
Fehler beim Parsen (Syntaxfehler): {\displaystyle \ce{ [S] \gg [P]. <span title="Aus: Englische Wikipedia, Abschnitt &quot;Assumptions and limitations&quot;" class="plainlinks">[https://en.wikipedia.org/wiki/Michaelis–Menten_kinetics#Assumptions_and_limitations <span style="color:#dddddd">ⓘ</span>]</span>}}

Dies gilt unter Standardbedingungen für In-vitro-Tests und für viele biologische In-vivo-Reaktionen, insbesondere dann, wenn das Produkt kontinuierlich durch eine nachfolgende Reaktion entfernt wird.

2. Die bei der Reaktion freigesetzte Energie ist sehr groß, d. h.

In Situationen, in denen keine dieser beiden Bedingungen zutrifft (d. h. die Reaktion ist energiearm und es existiert ein beträchtlicher Pool von Produkten), versagt die Michaelis-Menten-Gleichung, und es müssen komplexere Modellierungsansätze gewählt werden, die ausdrücklich die Vorwärts- und Rückwärtsreaktionen berücksichtigen, um die Enzymbiologie zu verstehen.

Bestimmung von Konstanten

Die typische Methode zur Bestimmung der Konstanten und beinhaltet die Durchführung einer Reihe von Enzymtests bei unterschiedlichen Substratkonzentrationen und die Messung der anfänglichen Reaktionsgeschwindigkeit . Initial" bedeutet hier, dass die Reaktionsgeschwindigkeit nach einer relativ kurzen Zeitspanne gemessen wird, in der sich zwar der Enzym-Substrat-Komplex gebildet hat, die Substratkonzentration jedoch annähernd konstant gehalten wird, so dass die Gleichgewichts- oder Quasi-Stationärzustandsannäherung weiterhin gültig ist. Durch Auftragen der Reaktionsgeschwindigkeit gegen die Konzentration und durch nichtlineare Regression der Michaelis-Menten-Gleichung lassen sich die Parameter ermitteln.

Bevor Computermöglichkeiten zur Durchführung nichtlinearer Regressionen zur Verfügung standen, wurden grafische Methoden zur Linearisierung der Gleichung verwendet. Es wurden mehrere davon vorgeschlagen, darunter das Eadie-Hofstee-Diagramm, das Hanes-Woolf-Diagramm und das Lineweaver-Burk-Diagramm; von diesen ist das Hanes-Woolf-Diagramm das genaueste. Die Hanes-Woolf-Darstellung ist zwar für die Visualisierung nützlich, aber alle drei Methoden verzerren die Fehlerstruktur der Daten und sind der nichtlinearen Regression unterlegen. Unter der Annahme eines ähnlichen Fehlers auf führt eine inverse Darstellung zu einem Fehler von auf (Ausbreitung der Unsicherheit). Ohne eine angemessene Schätzung der Werten sollte eine Linearisierung vermieden werden. Darüber hinaus wird bei der Regressionsanalyse nach der Methode der kleinsten Quadrate davon ausgegangen, dass die Fehler normalverteilt sind, was nach einer Transformation der Werte nicht gilt. Nichtsdestotrotz findet sich ihre Verwendung in der modernen Literatur.

1997 schlugen Santiago Schnell und Claudio Mendoza eine geschlossene Form für die Analyse der Zeitverlaufskinetik der Michaelis-Menten-Kinetik auf der Grundlage der Lösung der Lambert-W-Funktion vor. Und zwar,

wobei W die Lambert-W-Funktion ist und

Die obige Gleichung, die heute als Schnell-Mendoza-Gleichung bekannt ist, wurde verwendet, um die und aus Zeitverlaufsdaten.

Die Rolle der Substratentbindungen

Die Michaelis-Menten-Gleichung wird seit mehr als einem Jahrhundert zur Vorhersage der Produktbildungsrate bei enzymatischen Reaktionen verwendet. Sie besagt, dass die Geschwindigkeit einer enzymatischen Reaktion mit steigender Substratkonzentration zunimmt und dass eine zunehmende Entbindung von Enzym-Substrat-Komplexen die Reaktionsgeschwindigkeit verringert. Während die erste Vorhersage gut belegt ist, ist die zweite schwer zu fassen. Die mathematische Analyse der Auswirkung der Bindung zwischen Enzym und Substrat auf enzymatische Reaktionen auf Einzelmolekülebene hat gezeigt, dass die Bindung eines Enzyms an ein Substrat unter bestimmten Bedingungen die Geschwindigkeit der Produktbildung verringern kann, aber auch den gegenteiligen Effekt haben kann. Mit zunehmender Substratkonzentration kann ein Kipppunkt erreicht werden, an dem eine Erhöhung der Bindungslösungsrate eher zu einer Zunahme als zu einer Abnahme der Reaktionsrate führt. Die Ergebnisse deuten darauf hin, dass enzymatische Reaktionen in einer Weise ablaufen können, die gegen die klassische Michaelis-Menten-Gleichung verstößt, und dass die Rolle der Bindungsaufhebung bei der enzymatischen Katalyse noch experimentell bestimmt werden muss.

Theoretischer Hintergrund

Fließgleichgewicht

Im Allgemeinen sind Enzyme in der Lage, schwankende Substratkonzentrationen auszugleichen, d. h. sehr schnell ein Fließgleichgewicht („steady state“) dadurch einzustellen, dass sie ihre Tätigkeit dem Angebot anpassen. Dies bedeutet, dass die Konzentration des Enzym-Substrat-Komplexes auf der langsameren Zeitskala, die für den Prozess der Produktbildung gültig ist, konstant bleibt. Es gilt also Diese Annahme des Fließgleichgewichts wurde von G.E. Briggs und John Burdon Sanderson Haldane entwickelt. Die Michaelis-Menten-Kinetik ist nur unter Annahme dieses Fließgleichgewichts mit einer konstanten [ES] gültig.

Die Michaelis-Menten-Gleichung

Die Formeln an der Technischen Universität Graz.

Die aus der Reaktionsgleichung abgeleitete Michaelis-Menten-Kinetik lässt sich allgemein darstellen als:

v0 gibt hierbei die initiale Reaktionsgeschwindigkeit bei einer bestimmten Substratkonzentration [S] an. vmax ist die maximale Reaktionsgeschwindigkeit.

Eine Kenngröße für eine enzymatische Reaktion ist die Michaeliskonstante Km. Sie hängt von der jeweiligen enzymatischen Reaktion ab. Km gibt die Substratkonzentration an, bei der die Umsatzgeschwindigkeit halbmaximal ist (v = ½·vmax), die also bei Halbsättigung vorliegt. Sie ergibt sich als

für den Fall, dass k2 gegenüber k1 nicht vernachlässigt werden kann (Briggs-Haldane-Situation). Ein Spezialfall („Michaelis-Menten-Fall“) ist gegeben, wenn k2 << k1. Hierbei vereinfacht sich Km zu:

Dies entspricht der Dissoziationskonstante des Enzym-Substrat-Komplexes. In diesem Fall kann man Km also als Maß für die Affinität des Enzyms für das Substrat betrachten.

Eine weitere wichtige Größe ist die Wechselzahl, auch molekulare Aktivität oder „turnover number“ genannt. Dies ist die Geschwindigkeitskonstante des geschwindigkeitsbestimmenden Schrittes der Reaktion und wird mit kcat bezeichnet. Ist, wie im oben genannten Fall, der zweite Schritt geschwindigkeitsbestimmend, so ergibt sich aus der Definition der Reaktionsgeschwindigkeit, dass

und somit

.

Vereinfachte Herleitung der Michaelis-Menten-Gleichung

Das vorausgesetzte Fließgleichgewicht ermöglicht eine formale Herleitung der Michaelis-Menten-Gleichung aus einer passenden Formulierung des Massenwirkungsgesetzes (das seinerseits auf kinetischen Überlegungen beruht). Hinreichende Voraussetzungen der Herleitung sind:

  • die Formulierung des Fließgleichgewichts;
  • der Zusammenhang ; hierbei ist die als konstant angenommene Konzentration des Enzyms insgesamt (d. h. mit oder auch ohne gebundenes Substrat);
  • die Proportionalität .

Die Vorgehensweise erspart nicht nur (wie die im hier vorangehenden Abschnitt genannten Quelle) die Lösung von Differentialgleichungen, sondern auch die explizite Betrachtung der einzelnen Geschwindigkeitskonstanten . Ferner macht die genannte Formulierung des Fließgleichgewichts ohne weitere Rechnung verständlich,

  • warum eine kleine Konstante eine hohe Affinität des Enzyms zum Substrat bedeutet (der Wert des Bruchs fällt bei gegebenem Zähler, wenn der Nenner wächst), und
  • warum die Konstante die Dimension einer Konzentration hat.
Mathematische Herleitung der Michaelis-Menten-Gleichung  

und in ergibt:

Brüche stürzen;
(Michaelis-Menten).

Sättigung der enzymatischen Reaktion

Im Gegensatz zur Kinetik unkatalysierter Reaktionen gibt es in der Enzymkinetik das Phänomen der Sättigung: bei sehr hohen Substratkonzentrationen kann die Umsatzgeschwindigkeit v nicht weiter gesteigert werden, das heißt, es wird ein Wert vmax erreicht.

Km entspricht der Konzentration, für die v = ½ vmax gilt

Die Sättigungsfunktion eines „Michaelis-Menten-Enzyms“ lässt sich unter Verwendung der Parameter Km und vmax wie folgt formulieren:

Diese Michaelis-Menten-Beziehung ist die Gleichung einer Hyperbel.

Rechnung zur Klassifikation der Beziehung als Hyperbel  

Die Hyperbel sei vorgegeben.

  • Verschiebung um -Km in [S]-Richtung ergibt
  • (Nachfolgende) Spiegelung an der [S]-Achse ergibt:
  • (Nachfolgende) Verschiebung um +vmax in v-Richtung ergibt:

da die Michaelis-Menten-Beziehung graphisch durch eine Verkettung von Kongruenzabbildungen aus einer Hyperbelgleichung erzeugt werden kann, ist sie selbst eine Hyperbelgleichung.

Sie zeigt folgende Eigenschaften (siehe Abbildung):

Rechnung zur Bestimmung der Asymptote  

Der Grenzwert lässt sich mit Ausklammern und Kürzen von bestimmen:

  • Entspricht die Substratkonzentration [S] dem Km-Wert, so liegt die Hälfte des ursprünglich vorhandenen Enzyms E in Form des Enzym-Substrat-Komplexes ES vor, die andere Hälfte ist frei: [ES] = [E] = ½[E]0.
Verallgemeinerung: Ist die Substratkonzentration [S] das -fache von Km, so ist die Umsatzgeschwindigkeit das -fache von ; weiter ist dann [ES] das -fache von [E]0, und das -fache von [E]0 ist freies Enzym (Konzentration [E]). Mit folgen für [S] = KM die im Abschnitt "Die Michaelis-Menten-Gleichung" genannte halbmaximale Umsatzgeschwindigkeit sowie auch "[ES] = [E] = ½[E]0".
Rechnung zur Herleitung der genannten Beziehungen  

Einsetzen von in ergibt:

;

für die folgenden Umformungen werden Beziehungen aus dem Abschnitt „Vereinfachte Herleitung der Michaelis-Menten-Gleichung“ verwendet. - Gleichsetzen mit

ergibt:

;

Einsetzen in ergibt:

;
  • Da die Sättigung asymptotisch angenähert wird, sind hierzu Substratkonzentrationen erforderlich, die mehr als dem zehnfachen Km-Wert entsprechen. Im Umkehrschluss gilt: Hat man für ein Enzym eine Sättigungshyperbel gemessen, d. h. die Umsatzgeschwindigkeit v als Funktion der Substratkonzentration [S] bestimmt, so lassen sich daraus vmax (die Aktivität) und Km (die reziproke Affinität) ableiten. Ein relativ neues, einfaches und doch präzises Verfahren zu diesem Zweck ist die direkt-lineare Auftragung (siehe Enzymkinetik und S-System).

Inhibitoren und ihr Einfluss auf die Michaelis-Menten-Kinetik

Inhibitoren, darunter wichtige Medikamente und Gifte, ändern die Eigenschaften von Enzymen und hemmen die enzymatische Reaktion. Man kann Inhibitoren in verschiedene Klassen unterteilen (siehe dazu: Enzymhemmung). Je nach Wirkungsweise des Inhibitors, hat dieser einen unterschiedlichen Einfluss auf die Michaelis-Menten-Gleichung:

  • „kompetitive“ Inhibitoren erhöhen den Km-Wert, verändern vmax jedoch nicht.
  • „unkompetitive“ Inhibitoren (selten anzutreffen) binden spezifisch an den Enzym-Substrat Komplex. Sie senken vmax und den scheinbaren Km-Wert.
  • Inhibitoren vom Mischtyp erhöhen den Km-Wert und verringern vmax
  • als Sonderfall des Mischtyps hat der „nichtkompetitive“ Inhibitor zu gelten, der ausschließlich den vmax-Wert senkt und den Km-Wert unverändert lässt. Bei Einsubstrat-Enzymen kommt dieser Typus nicht vor.