Datei:Hexahedron.jpg

Aus besserwiki.de

Originaldatei(742 × 826 Pixel, Dateigröße: 51 KB, MIME-Typ: image/jpeg)

Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

Beschreibung

Beschreibung
English: A Hexahedron (cube). A regular polyhedron.
Quelle see below
Urheber Der ursprünglich hochladende Benutzer war Cyp in der Wikipedia auf Englisch
File:Hexahedron.svg ist eine vektorisierte Version dieses Bildes. Diese sollte an Stelle des Rasterbildes verwendet werden, sofern sie nicht schlechter ist.

File:Hexahedron.jpg → File:Hexahedron.svg

Für weitere Informationen siehe Help:SVG.

In anderen Sprachen
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
Neue Vektorgrafik

Lizenz

GNU head Es ist erlaubt, die Datei unter den Bedingungen der GNU-Lizenz für freie Dokumentation, Version 1.2 oder einer späteren Version, veröffentlicht von der Free Software Foundation, zu kopieren, zu verbreiten und/oder zu modifizieren; es gibt keine unveränderlichen Abschnitte, keinen vorderen und keinen hinteren Umschlagtext.

Der vollständige Text der Lizenz ist im Kapitel GNU-Lizenz für freie Dokumentation verfügbar.

w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Diese Datei ist unter der Creative-Commons-Lizenz „Namensnennung – Weitergabe unter gleichen Bedingungen 3.0 nicht portiert“ lizenziert.
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.
Diese Lizenzmarkierung wurde auf Grund der GFDL-Lizenzaktualisierung hinzugefügt.

Povray src code

Hexahedron, made by me using POV-Ray, see en:User:Cyp/Poly.pov for source.}}

//Picture   ***  Use flashiness=1 !!! ***
//
//   +w1024 +h1024 +a0.3 +am2
//   +w512 +h512 +a0.3 +am2
//
//Movie   ***  Use flashiness=0.25 !!! ***
//
//   +kc +kff120 +w256 +h256 +a0.3 +am2
//   +kc +kff60 +w256 +h256 +a0.3 +am2
//"Fast" preview
//   +w128 +h128
#declare notwireframe=1;
#declare withreflection=0;
#declare flashiness=0.25; //Still pictures use 1, animated should probably be about 0.25.

#macro This_shape_will_be_drawn()
   //PLATONIC SOLIDS ***********
  //tetrahedron() #declare rotation=seed(1889/*1894*/);
  //hexahedron() #declare rotation=seed(7122);
  //octahedron() #declare rotation=seed(4193);
  //dodecahedron() #declare rotation=seed(4412);
  //icosahedron() #declare rotation=seed(7719);


  //weirdahedron() #declare rotation=seed(7412);


   //ARCHIMEDIAN SOLIDS ***********
  //cuboctahedron() #declare rotation=seed(1941);
  //icosidodecahedron() #declare rotation=seed(2241);

  //truncatedtetrahedron() #declare rotation=seed(8717);
  //truncatedhexahedron() #declare rotation=seed(1345);
  //truncatedoctahedron() #declare rotation=seed(7235);
  //truncateddodecahedron() #declare rotation=seed(9374);
  //truncatedicosahedron() #declare rotation=seed(1666);

  //rhombicuboctahedron() #declare rotation=seed(6124);
  //truncatedcuboctahedron() #declare rotation=seed(1156);
  //rhombicosidodecahedron() #declare rotation=seed(8266);
  //truncatedicosidodecahedron() #declare rotation=seed(1422);

  //snubhexahedron(-1) #declare rotation=seed(7152);
  //snubhexahedron(1) #declare rotation=seed(1477);
  //snubdodecahedron(-1) #declare rotation=seed(5111);
  //snubdodecahedron(1) #declare rotation=seed(8154);


   //CATALAN SOLIDS ***********
  //rhombicdodecahedron() #declare rotation=seed(7154);
  //rhombictriacontahedron() #declare rotation=seed(1237);

  //triakistetrahedron() #declare rotation=seed(7735);
  //triakisoctahedron() #declare rotation=seed(5354);
  //tetrakishexahedron() #declare rotation=seed(1788);
  //triakisicosahedron() #declare rotation=seed(1044);
  //pentakisdodecahedron() #declare rotation=seed(6100);

  //deltoidalicositetrahedron() #declare rotation=seed(5643);
  //disdyakisdodecahedron() #declare rotation=seed(1440);
  //deltoidalhexecontahedron() #declare rotation=seed(1026);
  //disdyakistriacontahedron() #declare rotation=seed(1556);

  //pentagonalicositetrahedron(-1) #declare rotation=seed(7771);
  //pentagonalicositetrahedron(1) #declare rotation=seed(3470);
  //pentagonalhexecontahedron(-1) #declare rotation=seed(1046);
  //pentagonalhexecontahedron(1) #declare rotation=seed(1096);

   //PRISMS, ANTIPRISMS, ETC... ***********
  //rprism(5) #declare rotation=seed(6620);
  antiprism(5) #declare rotation=seed(6620);
  //bipyramid(5) #declare rotation=seed(6620);
  //trapezohedron(17) #declare rotation=seed(6620);

#end


#declare tau=(1+sqrt(5))/2;
#declare sq2=sqrt(2);
#declare sq297=sqrt(297);
#declare xi=(pow(sq297+17,1/3)-pow(sq297-17,1/3)-1)/3;
#declare sqweird=sqrt(tau-5/27);
#declare ouch=pow((tau+sqweird)/2,1/3)+pow((tau-sqweird)/2,1/3);
#declare alfa=ouch-1/ouch;
#declare veta=(ouch+tau+1/ouch)*tau;

#macro tetrahedron()
  addpointsevensgn(<1,1,1>)
  autoface()
#end

#macro hexahedron()
  addpointssgn(<1,1,1>,<1,1,1>)
  autoface()
#end

#macro octahedron()
  addevenpermssgn(<1,0,0>,<1,0,0>)
  autoface()
#end

#macro dodecahedron()
  addpointssgn(<1,1,1>,<1,1,1>)
  addevenpermssgn(<0,1/tau,tau>,<0,1,1>)
  autoface()
#end

#macro icosahedron()
  addevenpermssgn(<0,1,tau>,<0,1,1>)
  autoface()
#end


#macro weirdahedron()
  addpermssgn(<1,2,3>,<1,1,1>)
  autoface()
#end


#macro cuboctahedron()
  addevenpermssgn(<0,1,1>,<0,1,1>)
  autoface()
#end

#macro icosidodecahedron()
  addevenpermssgn(<0,0,2*tau>,<0,0,1>)
  addevenpermssgn(<1,tau,1+tau>,<1,1,1>)
  autoface()
#end


#macro truncatedtetrahedron()
  addevenpermsevensgn(<1,1,3>)
  autoface()
#end

#macro truncatedhexahedron()
  addevenpermssgn(<sq2-1,1,1>,<1,1,1>)
  autoface()
#end

#macro truncatedoctahedron()
  addpermssgn(<0,1,2>,<0,1,1>)
  autoface()
#end

#macro truncateddodecahedron()
  addevenpermssgn(<0,1/tau,2+tau>,<0,1,1>)
  addevenpermssgn(<1/tau,tau,2*tau>,<1,1,1>)
  addevenpermssgn(<tau,2,1+tau>,<1,1,1>)
  autoface()
#end

#macro truncatedicosahedron()
  addevenpermssgn(<0,1,3*tau>,<0,1,1>)
  addevenpermssgn(<2,1+2*tau,tau>,<1,1,1>)
  addevenpermssgn(<1,2+tau,2*tau>,<1,1,1>)
  autoface()
#end


#macro rhombicuboctahedron()
  addevenpermssgn(<1+sq2,1,1>,<1,1,1>)
  autoface()
#end

#macro truncatedcuboctahedron()
  addpermssgn(<1,1+sq2,1+sq2*2>,<1,1,1>)
  autoface()
#end

#macro rhombicosidodecahedron()
  addevenpermssgn(<1,1,1+2*tau>,<1,1,1>)
  addevenpermssgn(<tau,2*tau,1+tau>,<1,1,1>)
  addevenpermssgn(<2+tau,0,1+tau>,<1,0,1>)
  autoface()
#end

#macro truncatedicosidodecahedron()
  addevenpermssgn(<1/tau,1/tau,3+tau>,<1,1,1>)
  addevenpermssgn(<2/tau,tau,1+2*tau>,<1,1,1>)
  addevenpermssgn(<1/tau,1+tau,3*tau-1>,<1,1,1>)
  addevenpermssgn(<2*tau-1,2,2+tau>,<1,1,1>)
  addevenpermssgn(<tau,3,2*tau>,<1,1,1>)
  autoface()
#end


#macro snubhexahedron(s)
  addpermsaltsgn(<1,1/xi,xi>*s)
  autoface()
#end

#macro snubdodecahedron(s)
  addevenpermsevensgn(<2*alfa,2,2*veta>*s)
  addevenpermsevensgn(<alfa+veta/tau+tau,-alfa*tau+veta+1/tau,alfa/tau+veta*tau-1>*s)
  addevenpermsevensgn(<-alfa/tau+veta*tau+1,-alfa+veta/tau-tau,alfa*tau+veta-1/tau>*s)
  addevenpermsevensgn(<-alfa/tau+veta*tau-1,alfa-veta/tau-tau,alfa*tau+veta+1/tau>*s)
  addevenpermsevensgn(<alfa+veta/tau-tau,alfa*tau-veta+1/tau,alfa/tau+veta*tau+1>*s)
  autoface()
#end

#macro rhombicdodecahedron()
  cuboctahedron() dual()
#end

#macro rhombictriacontahedron()
  icosidodecahedron() dual()
#end

#macro triakistetrahedron()
  truncatedtetrahedron() dual()
#end

#macro triakisoctahedron()
  truncatedhexahedron() dual()
#end

#macro tetrakishexahedron()
  truncatedoctahedron() dual()
#end

#macro triakisicosahedron()
  truncateddodecahedron() dual()
#end

#macro pentakisdodecahedron()
  truncatedicosahedron() dual()
#end

#macro deltoidalicositetrahedron()
  rhombicuboctahedron() dual()
#end

#macro disdyakisdodecahedron()
  truncatedcuboctahedron() dual()
#end

#macro deltoidalhexecontahedron()
  rhombicosidodecahedron() dual()
#end

#macro disdyakistriacontahedron()
  truncatedicosidodecahedron() dual()
#end

#macro pentagonalicositetrahedron(s)
  snubhexahedron(s) dual()
#end

#macro pentagonalhexecontahedron(s)
  snubdodecahedron(s) dual()
#end

#macro rprism(n)
  #local a=sqrt((1-cos(2*pi/n))/2);
  #local b=0; #while(b<n-.5)
    addpointssgn(<sin(2*pi*b/n),cos(2*pi*b/n),a>,<0,0,1>)
  #local b=b+1; #end
  autoface()
#end

#macro antiprism(n)
  #local a=sqrt((cos(pi/n)-cos(2*pi/n))/2);
  #local b=0; #while(b<2*n-.5)
    addpoint(<sin(pi*b/n),cos(pi*b/n),a>)
  #local a=-a; #local b=b+1; #end
  autoface()
#end

#macro bipyramid(n)
  rprism(n) dual()
#end

#macro trapezohedron(n)
  antiprism(n) dual()
#end


#declare points=array[1000];
#declare npoints=0;
#declare faces=array[1000];
#declare nfaces=0;
#macro addpoint(a)
  #declare points[npoints]=a;
  #declare npoints=npoints+1;
#end
#macro addevenperms(a)
  addpoint(a)
  addpoint(<a.y,a.z,a.x>)
  addpoint(<a.z,a.x,a.y>)
#end
#macro addperms(a)
  addevenperms(a)
  addevenperms(<a.x,a.z,a.y>)
#end
#macro addpointssgn(a,s)
  addpoint(a)
  #if(s.x) addpointssgn(a*<-1,1,1>,s*<0,1,1>) #end
  #if(s.y) addpointssgn(a*<1,-1,1>,s*<0,0,1>) #end
  #if(s.z) addpoint(a*<1,1,-1>) #end
#end
#macro addevenpermssgn(a,s)
  addpointssgn(a,s)
  addpointssgn(<a.y,a.z,a.x>,<s.y,s.z,s.x>)
  addpointssgn(<a.z,a.x,a.y>,<s.z,s.x,s.y>)
#end
#macro addpermssgn(a,s)
  addevenpermssgn(a,s)
  addevenpermssgn(<a.x,a.z,a.y>,<s.x,s.z,s.y>)
#end
#macro addpointsevensgn(a)
  addpoint(a)
  addpoint(a*<-1,-1,1>)
  addpoint(a*<-1,1,-1>)
  addpoint(a*<1,-1,-1>)
#end
#macro addevenpermsevensgn(a)
  addevenperms(a)
  addevenperms(a*<-1,-1,1>)
  addevenperms(a*<-1,1,-1>)
  addevenperms(a*<1,-1,-1>)
#end
#macro addpermsaltsgn(a)
  addevenpermsevensgn(a)
  addevenpermsevensgn(<a.x,a.z,-a.y>)
#end
/*#macro addevenpermssgn(a,s) //Calls addevenperms with, for each 1 in s, a.{x,y,z} replaced with {+,-}a.{x,y,z}
  addevenperms(a)
  #if(s.x) addevenpermssgn(a*<-1,1,1>,s*<0,1,1>) #end
  #if(s.y) addevenpermssgn(a*<1,-1,1>,s*<0,0,1>) #end
  #if(s.z) addevenperms(a*<1,1,-1>) #end
#end*/
#macro addface(d,l)
  #local a=vnormalize(d)/l; 
  #local f=1;
  #local n=0; #while(n<nfaces-.5)
    #if(vlength(faces[n]-a)<0.00001) #local f=0; #end
  #local n=n+1; #end
  #if(f)
    #declare faces[nfaces]=a;
    #declare nfaces=nfaces+1;
  #end
#end
#macro dual()
  #declare temp=faces;
  #declare faces=points;
  #declare points=temp; 
  #declare temp=nfaces;
  #declare nfaces=npoints;
  #declare npoints=temp; 
#end

#macro autoface() //WARNING: ONLY WORKS IF ALL EDGES HAVE EQUAL LENGTH
  //Find edge length 
  #declare elength=1000;
  #local a=0; #while(a<npoints-.5) #local b=0; #while(b<npoints-.5)
    #local c=vlength(points[a]-points[b]); #if(c>0.00001 & c<elength) #local elength=c; #end
  #local b=b+1; #end #local a=a+1; #end

  //Find planes
  //#macro planes()
  #local a=0; #while(a<npoints-.5)
    #local b=a+1; #while(b<npoints-.5)
      #if(vlength(points[a]-points[b])<elength+0.00001) #local c=b+1; #while(c<npoints-.5)
        #if(vlength(points[a]-points[c])<elength+0.00001)
          #local n=vnormalize(vcross(points[b]-points[a],points[c]-points[a]));
          #local d=vdot(n,points[a]);
          #if(d<0) #local n=-n; #local d=-d; #end
          #local f=1;
          #local e=0; #while(e<npoints-.5)
            #if(vdot(n, points[e])>d+0.00001) #local f=0; #end
          #local e=e+1; #end
          #if(f)
            #declare ld=d;
            addface(n,d) //plane { n, d }
          #end
        #end
      #local c=c+1; #end #end
    #local b=b+1; #end
  #local a=a+1; #end
#end

This_shape_will_be_drawn()

//Random rotations are (hopefully) equally distributed...
#declare rot1=rand(rotation)*pi*2;
#declare rot2=acos(1-2*rand(rotation));
#declare rot3=(rand(rotation)+clock)*pi*2;
#macro dorot()
  rotate rot1*180/pi*y
  rotate rot2*180/pi*x
  rotate rot3*180/pi*y
#end

//Scale shape to fit in unit sphere
#local b=0;
#local a=0; #while(a<npoints-.5)
  #local c=vlength(points[a]); #if(c>b) #local b=c; #end
#local a=a+1; #end
#local a=0; #while(a<npoints-.5)
  #local points[a]=points[a]/b;
#local a=a+1; #end
#local a=0; #while(a<nfaces-.5)
  #local faces[a]=faces[a]*b;
#local a=a+1; #end

//Draw edges
#macro addp(a)
  #declare p[np]=a;
  #declare np=np+1;
#end
#local a=0; #while(a<nfaces-.5)
  #declare p=array[20];
  #declare np=0;
  #local b=0; #while(b<npoints-.5)
    #if(vdot(faces[a],points[b])>1-0.00001) addp(b) #end
  #local b=b+1; #end
  #local c=0; #while(c<np-.5)
    #local d=0; #while(d<np-.5) #if(p[c]<p[d]-.5)
      #local f=1;
      #local e=0; #while(e<np-.5) #if(e!=c & e!=d & vdot(vcross(points[p[c]],points[p[d]]),points[p[e]])<0)
        #local f=0;
      #end #local e=e+1; #end
      #if(f)
        object {
          cylinder { points[p[c]], points[p[d]], .01 dorot() }
          pigment { colour <.3,.3,.3> }
          finish { ambient 0 diffuse 1 phong 1 }
        }
      #end #end        
    #local d=d+1; #end
  #local c=c+1; #end
#local a=a+1; #end
/*#local a=0; #while(a<npoints-.5)
  #local b=a+1; #while(b<npoints-.5)
    #if(vlength(points[a]-points[b])<elength+0.00001)
      object {
        cylinder { points[a], points[b], .01 dorot() }
        pigment { colour <.3,.3,.3> }
        finish { ambient 0 diffuse 1 phong 1 }
      }
    #end
  #local b=b+1; #end
#local a=a+1; #end*/

//Draw points
#local a=0; #while(a<npoints-.5)
  object {
    sphere { points[a], .01 dorot() }
    pigment { colour <.3,.3,.3> }
    finish { ambient 0 diffuse 1 phong 1 }
  }
#local a=a+1; #end

#if(notwireframe)
//Draw planes
object {
  intersection {
    #local a=0; #while(a<nfaces-.5)
      plane { faces[a], 1/vlength(faces[a]) }
    #local a=a+1; #end
    //planes()
    //sphere { <0,0,0>, 1 }
    //sphere { <0,0,0>, ld+.01 inverse }
    dorot()
  }
  pigment { colour rgbt <.8,.8,.8,.4> }
  finish { ambient 0 diffuse 1 phong flashiness #if(withreflection) reflection { .2 } #end }
  //interior { ior 1.5 }
  photons {
    target on
    refraction on
    reflection on
    collect on
  }
}
#end

//  CCC Y Y PP
//  C   Y Y P P
//  C    Y  PP
//  C    Y  P
//  CCC  Y  P

#local a=0;
#while(a<11.0001)
  light_source { <4*sin(a*pi*2/11), 5*cos(a*pi*6/11), -4*cos(a*pi*2/11)> colour (1+<sin(a*pi*2/11),sin(a*pi*2/11+pi*2/3),sin(a*pi*2/11+pi*4/3)>)*2/11 }
  #local a=a+1;
#end

background { color <1,1,1> }

camera {
  perspective
  location <0,0,0>
  direction <0,0,1>
  right x/2
  up y/2
  sky <0,1,0>
  location <0,0,-4.8>
  look_at <0,0,0>
}

global_settings {
  max_trace_level 40
  photons {
    count 200000
    autostop 0
  }
}
File:Hexahedron.svg ist eine vektorisierte Version dieses Bildes. Diese sollte an Stelle des Rasterbildes verwendet werden.

File:Hexahedron.jpg → File:Hexahedron.svg

Für weitere Informationen siehe Help:SVG.

In anderen Sprachen
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
Neue Vektorgrafik

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
Image of Cube

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell21:28, 6. Jan. 2005Vorschaubild der Version vom 21:28, 6. Jan. 2005742 × 826 (51 KB)wikimediacommons>Kjell AndréA Hexahedron (cube). A regular polyhedron.

Die folgende Seite verwendet diese Datei: